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Squeezing Effect of the Charge and Current
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We study the dynamic evolution of a mesoscopic coupled circuit with alternating source
and solve its time-dependent Schrödinger equation with the help of the time dependent
invariant of the Hermitian operator. It indicates that the state of the system can evolve a
generalized squeezed state. The results show that in certain circumstance, compared to
the initial vacuum state, either the charges or the currents in two meshes are squeezed
simultaneously in the same extent. The expression of the nonadiabatic geometric phase
in the circuit is also obtained.
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tion; squeezing effect.
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1. INTRODUCTION

Nanoelectronics have been developing rapidly in recent years. Its main goal
is a continued downscaling of integrated circuits and the consequent upscaling
of functions of a chip. With the advancement of nanotechnology, it is possible
to fabricate mesoscopic system of size within the phase coherence length so
that electrons throughout the whole system retain the phase memory. This will
have a tremendous impact on science, technology, and society as a whole. In
such systems, the quantum effects of the devices must be taken into account.
Besides the energy quantization and the interference of wave functions, the charge
quantization also has significant effects in nanoelectronics. Louisell studied the
quantization of an LC circuit with a source and found that the Hamiltonian of
the circuit is similar to that of a driven harmonic oscillator (Allahverdyan and
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Nieuwenhuizen, 2002; Ji et al., 2003; Li and Chen, 1996; Flores, 2002; Liang and
Fan, 2001). The Refs. (Fan and Pan, 1998; Ji et al., 2002; Li, 1998) discussed
the quantum fluctuation at infinite temperature by thermodynamics theory, the
Coulomb blockade of tunneling, and Bloch oscillations in mesoscopic circuit.
Influence of coupling effects to quantum effect were studied in Refs. (Yu and
Liu, 1998). In these researches, people mostly discussed either without external
source or in adiabatic approximation, the external source being treated to direct
source. In fact, the external alternating source must be taken into account in most
time.

In this paper, we study dynamic of a mesoscopic coupled capacitor circuit with
alternating source. We obtain closed formulas for the time evolution of quantum
states and the evolution operator of the circuit by selecting proper Hermitian
invariant operator. The research results indicate that the state of the mesoscopic
LC circuit with ac source can evolve the generalized squeezed states.

2. QUANTUM HAMILTONIAN

The coupled capacitor circuit with voltage source is drawn in Fig. 1. The
quantum Hamiltonian of this system is

H = 1
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,

ε(t) = ε cos(ωext).

where L1, L2, C1, C2 stand for the inductance and capacity of the coupled
mesh, respectively; C3 stands for the capacity of the coupled branch; ε(t) the
external voltage source, a function of time. qj is the electric charge, and pj =
Lj q̇j the conjugate momenta. The quantum operators satisfy the commutation

Fig. 1. Coupled circuit of capacitors with alternating source.
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relation [q1, p1] = i, [q2, p2] = i(h = 1). Equation (1) represents a pair of quan-
tized harmonic oscillators which are coupled each other. We find a unitary operator
U that can make Hdiagonalization. The operator U is expressed in coordinate rep-
resentation(Lei et al., 2001)

U1 =
∫∫ +∞

−∞
dq1dq2

∣∣∣∣∣
(

K cos θ K sin θ

K−1 sin θ K−1 cos θ

) (
q1

q2

)〉〈(
q1

q2

)∣∣∣∣∣ , (2)

where

K2 =
√

L2

L1
, (3)

tan(2θ ) = 2C1C2
√

L1L2

L2C2(C1 + C3) − L1C1(C2 + C3)
. (4)

Then we can transform Eq. (1) into the separable form following

H = 1
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(5)

Because of the transformation U , a mesoscopic coupled circuit can be looked
as a pair of quantum harmonic oscillators independent to each other, with their
frequencies being

�2
1 = α1β1, �2

2 = α2β2.

Where

α1 = L−1
1 K−2 cos2 θ + L−1

2 K2 sin2 θ − C−1
3 sin(2θ ),

α2 = L−1
1 K−2 sin2 θ + L−1

2 K2 cos2 θ + C−1
3 sin(2θ ),

β1 = L1K
2ω2

1 cos2 θ + L2K
−2ω2

2 sin2 θ − C−1
3 sin(2θ ),

β2 = L1K
2ω2

1 sin2 θ + L2K
−2ω2

2 cos2 θ + C−1
3 sin(2θ ).

We define the annihilation and creation operators aj and a+
j by the relations

Qj =
√

αj

2�j

(a+
j + aj ), Pj = i

√
�j

2αj

(a+
j − aj ).

Then, the Hamiltonian of the circuit is

H (t) = �1a
+
1 a1 + �2a

+
2 a + A(a+

1 + a1) + B(a+
2 + a2). (6)
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A = ε cos θ

√
α1L2

2L1�1
cos ωext,

B = ε sin θ

√
α2L2

2L1�2
cos ωext.

The H (t) given by Eq. (6) depends on time. The time evolution of dynamical
systems with an explicitly time dependent Hamiltonian has been interesting over
the past several decades and has attracted considerable attention because of its
various applications. An important aspect in this regard is the geometric phase
associated with the evolution of the states in certain circumstance. In terms of
physical applications, the geometric phase, which reveals the gauge structure
associated with a phase shift in quantum mechanics, has attracted a lot of interest
in a wide variety field (Berry, 1984; Galvez et al., 2003; Shao et al., 1999). Lewis
and Riesenfeld (LR) started investigating the dynamics of time dependent systems
long ago with a method of Hermitian invariants. It has been shown that the general
solution of the time dependent Schrödinger equation can expressed as a linear
superposition of eigenstates of the invariant operator (Hartley and Ray, 1982). In
this paper, using quantum invariant theory of Lewis and Riesenfeld, we investigate
evolution of quantum state of the mesoscopic coupled circuit.

3. INVARIANT HERMITIAN

According to the quantum invariant theory of Lewis and Riesenfeld, we can
select appropriate Hermitian invariants I (t) to satisfy the following formula

i
∂I (t)

∂t
+ [I (t),H (t)] = 0, (7)

with I+(t) = I (t). Then the general solution of the time dependent Schrödinger
equation can be expressed as a linear superposition of eigenstates of the invariant
operator, and the time evolution operator of the system can be obtained. For a given
time dependent Hamiltonian H (t), a invariant Hermitian operator I (t)is defined
by the relation

I (t) = D[z1(t)]D[z2(t)]S[R(t)]K0S
+[R(t)]D+[z2(t)]D+[z1(t)]. (8)

K0 = a+
1 a1 + a+

2 a2

D[z(t)] is displacement operator which is defined

D[zj (t)] = exp[zj (t)a+
j − z∗

j (t)aj ],

and S[R(t)] squeezing operator

S[R(t)] = exp
(
R∗a1a2 − Ra+

1 a+
2

)
.
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z(t) and R(t) are complex time dependent function:

zj (t) = ρj (t) exp[iδj (t)], (9)

R(t) = r(t) exp[iϕ(t)]. (10)

For the sake of simplify, z(t), R(t), ρ(t), δ(t), r(t), and ϕ(t) are replaced by
z, R, ρ, δ, r and ϕ, correspondingly, in the following discussion. Using the
displacement and squeezing transformation,

D(zj )ajD
+(zj ) = aj − zj ,

S(R)a1S
+(R) = a1 cosh r + a+

2 sinh r exp(iϕ),

S(R)a2S
+(R) = a2 cosh r + a+

1 sinh r exp(iϕ).

We obtain

I (t) = (a+
1 a1 + a+

2 a2) cosh 2r + 1

2
(a+

1 a+
2 eiϕ + a1a2e

−iϕ) sinh 2r,

− a+
1 f1 − a1f

∗
1 − a+

2 f2 − a2f
∗
2 + h. (11)

where

f1(t) = z1(t) cosh 2r + z∗
1(t) sinh 2r exp(iϕ), (12)

f2(t) = z2(t) cosh 2r + z∗
2(t) sinh 2r exp(iϕ), (13)

h = (ρ2
1 + ρ2

2 ) cosh 2r + [ρ1ρ2 sinh 2r cos(δ1 + δ2 − ϕ)]. (14)

Substituting Eqs. (4) and (9) into Eq. (5), after a long but direct calculation,
we obtain the following auxiliary equations:

ṙ = 0, (15)

ϕ̇ = −�1 − �2, (16)

ḟ1 = i[−�1f1 − A cosh 2r + B sinh 2r exp(iϕ)], (17)

ḟ2 = i[−�2f2 − B cosh 2r + A sinh 2r exp(iϕ)], (18)

ḣ = iA(f1 − f ∗
1 ) + iB(f2 − f ∗

2 ). (19)

Based on the given initial condition, Solving above auxiliary equations, we
can obtain the relevant parameters, i.e., the quantum invariants I (t).

Let {|n1, n2〉}denote the eigenstates of the number operatorK0, which are the
analogs of the number states of the harmonic oscillator, then we have

K0 |n1, n2〉 = (n1 + n2) |n1, n2〉 .

Then, the state

|z, r, n〉 = D[z1(t)]D[z2(t)]S[R(t)] |n1, n2〉 , (20)
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is just the normalized eigenstate of the invariant operator I (t)with the time inde-
pendent eigenvalue spectrum, i.e.,

I (t) |z, r, n〉 = (n1 + n2) |z, r, n〉 .

4. THE TIME EVOLUTION OF OPERATOR

Once the invariant operator and its eigenvalues are known, the solutions of the
circuit can be easily found. Suppose that |�(t)〉 is the state vector of the mesoscopic
circuit that evolves according to the time dependent Schrödinger equation

ih
∂�(t)

∂t
= H (t)�(t),

according to the quantum Invariant theory of Lewis and Riesenfeld (LR), the
solution of this equation can be expressed

|�(t)〉 =
∑
n1,n2

Cn1,n2 exp(iαn1,n2 )D(z1)D(z2)S(r) |n1, n2〉, (21)

where the expansion coefficients Cn are independent of time and αn is the LR
phase. The eigenstates of the invariant operator evolve according to the time
dependent Schrödinger equation as long as the LR phase satisfies

αn = γn + βn.

Where the γn is defined the LR geometric phase by

γn =
∫ t

0

〈
z, r, n

∣∣∣∣i ∂

∂t

∣∣∣∣ z, r, n
〉
dt ′. (22)

And

βn = −
∫ t

0
〈z, r, n|H (t ′) |z, r, n〉 dt ′, (23)

is the usual dynamical phase. The LR phase αn is well defined for general nonadi-
abatic and noncyclic evolution of the system. It represents a phase change during
the time evolution of the state. Once the dynamical phase is removed, the phase
difference accumulated during the time evolution has a purely geometric origin.

We now derive the time evolution operator of the circuit, which is useful to
investigate the dynamic of the system. When t = 0, from Eq. (21), we have

|�(0)〉 = D(z10)D(z20)S(r0)
∑
n1,n2

Cn1,n2 exp(iαn1,n2 ) |n1, n2〉. (24)

Therefore we obtain∑
n1,n2

Cn1,n2 |n1, n2〉 = S+(r0)D+(z20)D+(z10) |�(0)〉 . (25)
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So the quantum state of time evolution of the system is

|�(t)〉 = exp(iσ )D(z1)D(z2)S(r)exp[−i(ε1a
+
1 a1 + ε2a

+
2 a2)]S+

× (r0)D+(z20)D+(z10) |ψ(0)〉 (26)

where

2σ =
∫ t

0
{i(ż1z

∗
1 + ż2z

∗
2 − z1ż

∗
1 − z2ż

∗
2) − 2�1z1z

∗
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∗
2} dt ′

− 2
∫ t

0
[(ϕ̇ + �1 + �2) sinh2 r + A(z1 + z∗

1) + B(z2 + z∗
2)] dt ′

ε1 =
∫ t

0
[ϕ̇ sinh2 r + �1 cosh2 r + �2 sinh2 r − G cos ϕ sinh 2r] dt ′,

ε2 =
∫ t

0
[ϕ̇ sinh2 r + �1 sinh2 r + �2 cosh2 r − G cos ϕ sinh 2r] dt ′

The time evolution operator of the circuit is

U2(t) = exp{iσ }D(z1)D(z2)S(r) exp[−i(ε1a
+
1 a1 + ε2a

+
2 a2)]

× S+(r0)D+(z20)D+(z10). (27)

The time evolution from an arbitrary initial state can be calculated in terms
of the unitary operator. For the mesoscopic system evolving from an initial wave
function |�(0)〉 to a final wave function|�(t)〉, since |�(t)〉cannot be obtained
from |�(0)〉by a multiplication with a complex number, the initial and final states
are distinct and the evolution is noncyclic.

5. SQUEEZING EFFECT

In Heisenberg picture, the time evolutions of any operator aj are

a1(t) = x1(t)(a1 − z10) + x2(t)(a+
2 + z∗

20) + z1, (28)

a2(t) = x3(t)(a2 − z20) + x4(t)(a+
1 + z∗

10) + z2. (29)

where

x1(t) = cosh r0 cosh r exp(−iε1) − sinh r0 sinh r exp[i(ε2 + ϕ − ϕ0)], (30)

x2(t) = sinh r0 cosh r exp[−i(ε1 − ϕ0)] − cosh r0 sinh r exp[i(ε2 + ϕ)], (31)

x3(t) = cosh r0 cosh r exp(−iε2) − sinh r0 sinh r exp[i(ε1 + ϕ − ϕ0)], (32)

x4(t) = sinh r0 cosh r exp[−i(ε2 − ϕ0)] − cosh r0 sinh r exp[i(ε1 + ϕ)]. (33)
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We assume that the circuit prepared initially in vacuum state|�(0)〉 = |0, 0〉.
Then, in the state|�(t)〉, we can obtain quantum fluctuations of the Qj and Pj

〈
(�Q)2

1

〉 = α1

2�1
(x∗

1x1 + x∗
1x∗

2 + x1x2 + x∗
2x2), (34)
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1
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(x∗

1x1 − x∗
1x∗

2 − x1x2 + x∗
2x2), (35)
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2
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(x∗
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3x∗

4 + x3x4 + x∗
4x4), (36)

〈
(�P )2

2

〉 = �2

2α2
(x∗

3x3 − x∗
3x∗

4 − x3x4 + x∗
4x4). (37)

With the inverse transformation of Eq. (2) and Eqs. (34)–(37), we can obtain
the quantum fluctuation of the charges and currents in both meshs. Since we
supposed the initial state to be vacuum state, the initial squeezing factor should be
r0 = 0, ϕ0 = 0. It indicates that the system is not squeezed originally but squeezed
with time evolution. What must be paid much attention is that the squeezing extent
parameter is invariable during the evolution of the system with external source by
Eq. (15).

When r0 = 0 and ϕ0 = 0, Eqs. (30)–(33) can be written as:

x1(t) = cosh r exp(−iε1),

x2(t) = −sinh r exp[i(ε2 + ϕ)],

x3(t) = cosh r exp(−iε2),

x4(t) = −sinh r exp[i(ε1 + ϕ)].

So the quantum fluctuations of the charges and currents can be obtained
by Eq. (16).

〈
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1
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√
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{
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(
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2�1
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)
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}
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√
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Clearly, when (�1 + �2)t = kπ ,
〈
(�q)2

j

〉 = 〈
(�q)2

j

〉
0
e−r ,

〈
(�p)2

j

〉 = 〈
(�p)2

j

〉
0
er . (42)

The suffix “0” represents the corresponding quantum fluctuations of the
original vacuum state. Formula (42) indicates that correspond to the original
vacuum state, charges are squeezed, but currents are not.

When (�1 + �2)t = kπ + π
4 ,

〈
(�q)2

j

〉 = 〈
(�q)2

j

〉
0
er ,

〈
(�p)2

j

〉 = 〈
(�p)2

j

〉
0
e−r , (43)

currents are squeezed, but charges are not.

6. CONCLUSION

We have studied the dynamic evolution of the mesoscopic coupled circuits
with external ac source by using the invariant operator method. We show that
the quantum state of the system can evolve a generalized squeezed and have ob-
tained the quantum fluctuations of the circuits. The results show that in certain
circumstance, compared to the vacuum state, either the charges or the currents in
two meshes are squeezed simultaneously in the same extent. We can discuss the
factors arousing squeezing. From Eq. (15), ṙ = 0, which shows that the interaction
of the system with the external source will not arouse squeezing effects; it is the
certain result of without considering the coupling energy aroused by the interfer-
ence superposition of the wavefunction of the electrons in the both electrodes of
mesoscopic capacitor. But from Eq. (2), we can see that the operator U1causes not
only rotation transformation but also squeezing transformation. For example, as
the factor K2 appears in charges, its inverse K−2 appears in currents. It indicates
that squeezing is aroused by the coupled factor of the system.
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